首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1370篇
  免费   106篇
  国内免费   1篇
  2023年   6篇
  2022年   7篇
  2021年   29篇
  2020年   15篇
  2019年   14篇
  2018年   28篇
  2017年   16篇
  2016年   43篇
  2015年   72篇
  2014年   88篇
  2013年   86篇
  2012年   126篇
  2011年   126篇
  2010年   78篇
  2009年   59篇
  2008年   97篇
  2007年   92篇
  2006年   95篇
  2005年   93篇
  2004年   52篇
  2003年   80篇
  2002年   46篇
  2001年   18篇
  2000年   10篇
  1999年   8篇
  1998年   8篇
  1997年   5篇
  1996年   8篇
  1995年   5篇
  1994年   5篇
  1993年   2篇
  1992年   5篇
  1991年   3篇
  1990年   3篇
  1989年   2篇
  1988年   3篇
  1987年   4篇
  1986年   2篇
  1985年   3篇
  1981年   2篇
  1979年   4篇
  1977年   2篇
  1976年   2篇
  1970年   2篇
  1967年   2篇
  1963年   2篇
  1961年   4篇
  1951年   1篇
  1923年   1篇
  1914年   1篇
排序方式: 共有1477条查询结果,搜索用时 15 毫秒
61.
62.
Fatty acid β-oxidation is essential for seedling establishment of oilseed plants, but little is known about its role in leaf metabolism of adult plants. Arabidopsis thaliana plants with loss-of-function mutations in the peroxisomal ABC-transporter1 (PXA1) or the core β-oxidation enzyme keto-acyl-thiolase 2 (KAT2) have impaired peroxisomal β-oxidation. pxa1 and kat2 plants developed severe leaf necrosis, bleached rapidly when returned to light, and died after extended dark treatment, whereas the wild type was unaffected. Dark-treated pxa1 plants showed a decrease in photosystem II efficiency early on and accumulation of free fatty acids, mostly α-linolenic acid [18:3(n-3)] and pheophorbide a, a phototoxic chlorophyll catabolite causing the rapid bleaching. Isolated wild-type and pxa1 chloroplasts challenged with comparable α-linolenic acid concentrations both showed an 80% reduction in photosynthetic electron transport, whereas intact pxa1 plants were more susceptible to the toxic effects of α-linolenic acid than the wild type. Furthermore, starch-free mutants with impaired PXA1 function showed the phenotype more quickly, indicating a link between energy metabolism and β-oxidation. We conclude that the accumulation of free polyunsaturated fatty acids causes membrane damage in pxa1 and kat2 plants and propose a model in which fatty acid respiration via peroxisomal β-oxidation plays a major role in dark-treated plants after depletion of starch reserves.  相似文献   
63.
Valuable binding-site annotation data are stored in databases. However, several types of errors can, and do, occur in the process of manually incorporating annotation data from the scientific literature into these databases. Here, we introduce MotifAdjuster , a tool that helps to detect these errors, and we demonstrate its efficacy on public data sets.  相似文献   
64.

Background  

A central goal of experimental studies in systems biology is to identify meaningful markers that are hidden within a diffuse background of data originating from large-scale analytical intensity measurements as obtained from metabolomic experiments. Intensity-based clustering is an unsupervised approach to the identification of metabolic markers based on the grouping of similar intensity profiles. A major problem of this basic approach is that in general there is no prior information about an adequate number of biologically relevant clusters.  相似文献   
65.
We herein describe the positional identification of a 2-bp deletion in the open reading frame of the MRC2 receptor causing the recessive Crooked Tail Syndrome in cattle. The resulting frame-shift reveals a premature stop codon that causes nonsense-mediated decay of the mutant messenger RNA, and the virtual absence of functional Endo180 protein in affected animals. Cases exhibit skeletal anomalies thought to result from impaired extracellular matrix remodeling during ossification, and as of yet unexplained muscular symptoms. We demonstrate that carrier status is very significantly associated with desired characteristics in the general population, including enhanced muscular development, and that the resulting heterozygote advantage caused a selective sweep which explains the unexpectedly high frequency (25%) of carriers in the Belgian Blue Cattle Breed.  相似文献   
66.
The Photoactive Yellow Protein (PYP) from Halorhodospira halophila (formerly Ectothiorhodospira halophila) is increasingly used as a model system. As such, a thorough understanding of the photocycle of PYP is essential. In this study we have combined information from pOH- (or pH-) dependence and (kinetic) deuterium isotope effects to elaborate on existing photocycle models. For several characteristics of PYP we were able to make a distinction between pH- and pOH-dependence, a nontrivial distinction when comparing data from samples dissolved in H2O and D2O. It turns out that most characteristics of PYP are pOH-dependent. We confirmed the existence of a pB′ intermediate in the pR to pB transition of the photocycle. In addition, we were able to show that the pR to pB′ transition is reversible, which explains the previously observed biexponential character of the pR-to-pB photocycle step. Also, the absorption spectrum of pB′ is slightly red-shifted with respect to pB. The recovery of the pG state is accompanied by an inverse kinetic deuterium isotope effect. Our interpretation of this is that before the chromophore can be isomerized, it is deprotonated by a hydroxide ion from solution. From this we propose a new photocycle intermediate, pBdeprot, from which pG is recovered and which is in equilibrium with pB. This is supported in our data through the combination of the observed pOH and pH dependence, together with the kinetic deuterium isotope effect.  相似文献   
67.
The photosynthetic reaction center is one of the most complicated molecular complexes. Transducing photon energy to a transmembrane electrochemical potential difference for protons, it is the direct or indirect energy source for virtually all life. We show here that it operates in a simple, battery-like manner, with a maximum potential of 0.20 V. Intriguingly this is only one fifth of the energy of the absorbed photon.  相似文献   
68.
Our knowledge on the principle mechanisms of cytokinin action has been significantly deepened over the last years, but several weakly explored areas still remain on the map of cytokinin cellular physiology. Cytokinin-binding proteins could also be included in this pending field of cytokinin research. Probably, the best explored representative of this group is the wheat cytokinin-binding protein 1 (CBP-1). The role of this germ-allocated protein as a presumable regulator of free aromatic cytokinin levels during grain germination has been discussed intensively. To dig deeper into this interesting protein, this study was aimed at the identification of the CBP-1 amino acid sequence. A combination of in silico BLAST search, classical biochemical CBP-1 purification based on isoelectric point precipitation and ion-exchange chromatography, and proteomic analysis of the isolated protein by ultra-high resolution tandem mass spectrometry allowed us to uncover and validate two CBP-1 subunit candidate sequences with molecular masses of 56.2 and 55.0 kDa, respectively. Interestingly, we found the latter sequence alternated in two amino acids in the putative cytokinin-binding motive in comparison to the composition of this domain reported in the original studies. A BLAST search for the amino acid sequence of the binding region among plant proteomes revealed several highly related protein sequences, all originating from the Poaceae family. This piece of information could give support to the elucidation of the role of CBP-1 in physiological processes mediated by aromatic cytokinins.  相似文献   
69.
70.
Periodontitis is a multi-microbial oral infection with high prevalence among adults. Putative oral pathogens are commonly found in periodontally diseased individuals. However, these organisms can be also detected in the oral cavity of healthy subjects. This leads to the hypothesis, that alterations in the proportion of these organisms relative to the total amount of oral microorganisms, namely their abundance, rather than their simple presence might be important in the transition from health to disease. Therefore, we developed a quantitative molecular method to determine the abundance of various oral microorganisms and the portion of bacterial and archaeal nucleic acid relative to the total nucleic acid extracted from individual samples. We applied quantitative real-time PCRs targeting single-copy genes of periodontal bacteria and 16S-rRNA genes of Bacteria and Archaea. Testing tongue scrapings of 88 matched pairs of periodontally diseased and healthy subjects revealed a significantly higher abundance of P. gingivalis and a higher total bacterial abundance in diseased subjects. In fully adjusted models the risk of being periodontally diseased was significantly higher in subjects with high P. gingivalis and total bacterial abundance. Interestingly, we found that moderate abundances of A. actinomycetemcomitans were associated with reduced risk for periodontal disease compared to subjects with low abundances, whereas for high abundances, this protective effect leveled off. Moderate archaeal abundances were health associated compared to subjects with low abundances. In conclusion, our methodological approach unraveled associations of the oral flora with periodontal disease, which would have gone undetected if only qualitative data had been determined.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号